A Study on Post mining of Association Rules Targeting User Interest

نویسندگان

  • P. Sarala
  • S. Jayaprada
چکیده

Association Rule Mining means discovering interesting patterns with in large databases. Association rules are used in many application areas such as market base analysis, web log analysis, protein substructures. Several post processing methods were developed to reduce the number of rules using nonredundant rules or pruning techniques such as pruning, summarizing, grouping or visualization based on statistical information in the database. As such, problem of identifying interest rules remind the same. Methods such as Rule deductive method, Stream Mill Miner (SMM), a DSMS (Data Stream Management Systems), Medoid clustering technique (PAM: Partitioning around medoids), Constraint-based Multi-level Association Rules with an ontology support were developed but are not effective. The number of rules generated by Apriori, FPgrowth depends on statistical measures such as support, confidence and may not suit the requirements of user. Methods that use ranking algorithm and IRF (Item Relatedness Filter) have the drawbacks of using filters during pruning stage. The paper studies methods that were proposed for post processing of association rules and proposes a new method for extracting association rules based on user interest using MIRO (Mining Interest Rules Using Ontologies) framework that uses correlation measures combined with domain ontology, succint constraints. KeywordsAssociation Rules, Association Rule Mining, Ontology, correlation measures, user constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)

In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...

متن کامل

A virtual reality-based approach for interactive and visual mining of association rules

This thesis is at the intersection of two active research areas: Association Rule Mining and Virtual Reality. The main limitations of the association rule extraction algorithms are that (i) they produce large amount of rules and (ii) many extracted rules have no interest to the user. In practise, the amount of generated rule sets limits severely the ability of the user to explore these rule set...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Introducing an algorithm for use to hide sensitive association rules through perturb technique

Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...

متن کامل

Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study

This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012